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SOTA: Boosting-based methods vs Classic approach: Gaussian Processes e
GP-RFM
Question: Can we include feature learning in GPs? Recursive feature extraction Flexible uncertainty quantification
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Correlation of learnt feature matrix M
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J M= AGOP(fy) | 04 RFM and ARD perform similar on UCI.
Model parametrization 0.2/ _ Interpretation:
pred. function f(x) = k(x, X)a ul TRPM R e - Dﬂ " | » RFM features sometimes correlate
RBF (or Laplace) kernel Laplace kernel —0.27 —RFM-diag vs ARg-Laplace | highly with ARD features.
Km(x,z) = exp(—||x — z||%)) Km(x,z) = exp(—||x — z||m) —04 S & RN & > » RFM and ARD can learn different
with Auto. Relevance Det. (ARD) with Mahalanobis distance T QOQO ng @Q.\,OS’ §\ features while performing similarly.
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Training procedure

Maximum Likelihood Estimation Kernel weights Visualizing feature matrices M
arg ming — log p(y | X, 0) a = (kyv(x, X) + Aol ly
with @ = {/1,...,0,} Average gradient outer product (AGOP) Data: x ~ N(0,1), y = <211£1 x;7)? — introduce correlation.
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M =3 > i1 V(i) Vi (xi) Interpretation: » Full-RFM learns features to captures correlation.

» Diag-RFM and ARD loose crucial information.
Tabular datasets GP-RFM GP-RFM (diag) GP-ARD-Laplace
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—> (1) competitive results
Extension: out-of-distribution data Combining RFMs with GPs

—> (2) partly correlating features

Data: Housing data with increasing target (price) OOD shift.

Interpretation: GP-RFM most reliable method under OOD shift. Main message: Open questions:
Normalized NLL () CE (1) 1. RFM and ARD kernels learn » Why do RMFs and ARD sometimes
1 ‘ ‘ ‘ ‘ ‘ [ ‘ ‘ — sometimes similar features. learn different features?
08 | ﬂgiﬁﬁﬁfﬁfjj 2. RFM-Laplace and ARD-Laplace can » Is there a theoretical connection
' ) 0.8/ HUNGBoost | outperform boosting methods. between AGOP and MLE?
0.6/ | 0.6 | CuBooslmembic 1 3. RFMs are well suited for uncertainty » Which real-world examples require
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