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Problem definition

Setup: Regression with tabular data

Point estimate
Uncertainty
quantification+

RMSE, ... NLL, coverage, avg. interval length, ...

SOTA: Boosting-based methods vs Classic approach: Gaussian Processes

Question: Can we include feature learning in GPs?

Background

Gaussian Process (GP)

Gaussian Process
N (µ,Σ)
µ = f(x)

Σ = V[f(x)]

xi yi

Recursive Feature Machine (RFM)

Kernel Machine
fM(x)

xi yi

Feature Matrix
M = AGOP(fM)

Model parametrization
pred. function f(x) = k(x,X)α

RBF (or Laplace) kernel
KM(x, z) = exp(−γ∥x− z∥2M)

with Auto. Relevance Det. (ARD)
M−1 = diag([ℓ21, . . . , ℓ

2
d])

Laplace kernel
KM(x, z) = exp(−γ∥x− z∥M)

with Mahalanobis distance
∥x− z∥M =

√
(x− z)⊤M(x− z)

Training procedure

Maximum Likelihood Estimation
argminθ− log p(y | X,θ)

with θ = {ℓ1, . . . , ℓd}

Kernel weights
α = (kM(x,X) + λαIn)−1y

Average gradient outer product (AGOP)
M = 1

n

∑n
i=1∇xfM(xi)∇xfM(xi)⊤

Tabular datasets
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Data:
Tabular benchmark; 16 datasets;
5 − 613 features; 6 497 − 22784
samples.

Setup:
Hyperparameter tuning over 20
seeds; normalize metrics for each
dataset.

Interpretation:
ARD-Laplace and RFM-Laplace
▶ can outperform/match
boosting methods.

▶ yield similar performance.

Extension: out-of-distribution data

Data: Housing data with increasing target (price) OOD shift.
Interpretation: GP-RFM most reliable method under OOD shift.
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Recursive feature extraction Flexible uncertainty quantification

Penalize off-diagonal elements: M = 1
n

∑n
i=1∇xfM(x)∇xfM(x)⊤ + λMId

Correlation of learnt feature matrixM
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Data:
UCI benchmark; 7 datasets;
4− 16 features; 308− 11934 samples.

RFM and ARD perform similar on UCI.

Interpretation:
▶ RFM features sometimes correlate
highly with ARD features.

▶ RFM and ARD can learn different
features while performing similarly.

Visualizing feature matricesM

Data: x ∼ N (0, I), y = (
∑10

i=1 x[i])
2 → introduce correlation.

Interpretation: ▶ Full-RFM learns features to captures correlation.
▶ Diag-RFM and ARD loose crucial information.
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Conclusion

Combining RFMs with GPs
(1) competitive results

(2) partly correlating features

Main message:
1. RFM and ARD kernels learn
sometimes similar features.

2. RFM-Laplace and ARD-Laplace can
outperform boosting methods.

3. RFMs are well suited for uncertainty
quantification.

Open questions:
▶ Why do RMFs and ARD sometimes
learn different features?

▶ Is there a theoretical connection
between AGOP and MLE?

▶ Which real-world examples require
the full-RFM?

References

Mechanism of feature learning in deep fully connected networks and kernel machines that recursively
learn features
Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, Mikhail Belkin
ArXiv preprint arXiv:2212.13881.

Workshop on Unifying Representations in Neural Models, NeurIPS 2023 daniel.gedon@it.uu.se, aabedsoltan@ucsd.edu


