

UPPSALA UNIVERSITET

Background

Spiked covariance model. Population covariance C of x, eigenvectors v, eigenvalues λ ,

$$oldsymbol{C} = oldsymbol{I} + \sum_{i=1}^d oldsymbol{v}_i \lambda_i oldsymbol{v}_i^ op.$$

Eigenvalue shift. Distribution of spike sample eigenvalue λ_1 , depending on λ_1 :

- $\lambda_1 \in [1, 1 + \sqrt{\gamma}]$: spike at $\mu(\gamma) = (1 + \sqrt{\gamma})^2$.
- $\lambda_1 > 1 + \sqrt{\gamma}$: spike Normal with $\mu(\lambda, \gamma) =$ $\gamma \frac{\lambda}{\lambda - 1} + \lambda.$

Eigenvector shift. Sample eigenvectors $\hat{\boldsymbol{v}}$. As $p/n \to \gamma$,

[1] Johnstone, I. M. On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 2001.

[2] Johnstone, I. M. and Paul, D. PCA in high dimensions: An orientation. Proceedings of the IEEE, 2018.

Theory – preliminary

Risk. $R(\hat{\boldsymbol{\theta}}) = \mathbb{E}_{(\boldsymbol{x}_0, y_0) \sim \mathcal{D}} \left[(y_0 - \hat{y}_0(\boldsymbol{x}_0))^2 \right]$

Eigenvector shift. Generalisation to all eigenvectors

	$\left(ext{diag} \left((m{v}_1^{ op} \hat{m{v}}_1)^2,, (m{v}_k^{ op} \hat{m{v}}_k)^2, 0,, 0 ight), ight.$	k < d,
$P_k = \langle$	$ ext{diag}\left((oldsymbol{v}_1^{ op}\hat{oldsymbol{v}}_1)^2,,(oldsymbol{v}_d^{ op}\hat{oldsymbol{v}}_d)^2 ight),$	k = d,
	${ m diag}\left((m{v}_1^{ op}\hat{m{v}}_1)^2+c_1^2,,(m{v}_d^{ op}\hat{m{v}}_d)^2+c_d^2 ight),$	k > d.

No Double Descent in Principal Component Regression: A High-Dimensional Analysis

Daniel Gedon, Antônio H. Ribeiro, Thomas B. Schön Uppsala University (Sweden) contact: daniel.gedon@it.uu.se

Motivation

- Overparameterized models, $\gamma = \frac{p}{n} > 1 \rightarrow$ double descent
- Real-world data often on a low-dimensional manifold
- PCR (= PCA + linear regression) widely adopted in practice

[3] Belkin, M., Hsu, D. J., Ma, S., and Mandal, S. Reconciling modern machine-learning practice and the classical bias-variance trade-off. PNAS, 2019

Theory

Theorem. Let $n, p \to \infty$ with $\frac{p}{n} \to \gamma \in (0, \infty)$, we have a.s.

$$\begin{split} \mathbb{E}_{\boldsymbol{\nu}} \left[R(\hat{\boldsymbol{\theta}}) \right] &\to \operatorname{Bias}_{\gamma}(\hat{\boldsymbol{\theta}})^{2} + \operatorname{Var}_{\gamma}(\hat{\boldsymbol{\theta}}) + \sigma_{\nu}^{2}, \\ \operatorname{Bias}_{\gamma}(\hat{\boldsymbol{\theta}})^{2} &= \bar{\boldsymbol{\beta}}^{\top} \big(\boldsymbol{\Lambda}_{d} - \boldsymbol{\Lambda}_{d} \boldsymbol{P}_{k} - \boldsymbol{P}_{k} \boldsymbol{\Lambda}_{d} + \boldsymbol{P}_{k} \\ &+ \boldsymbol{P}_{k} r_{w}^{2} \boldsymbol{C}_{z} \boldsymbol{P}_{k} \big) \bar{\boldsymbol{\beta}}, \end{split}$$

$$\operatorname{Var}_{\gamma}(\hat{\boldsymbol{\theta}}) = \frac{\sigma_{\nu}^{2}}{n} \left(\operatorname{Tr} \left[(\boldsymbol{P}_{k} r_{w}^{2} \boldsymbol{C}_{z} + \boldsymbol{I}_{k}) \frac{1}{\mu(\boldsymbol{\Lambda}, \gamma)} \right] + (p - d) \int_{s_{c}}^{(1 + \sqrt{\gamma})^{2}} \frac{1}{s} dF_{\gamma}(s) \right)$$

Interpretation.

- 1. Bias as scaled d-dimensional subspace of eigenvalues Λ .
- 2. Variance with $k \leq d \rightarrow s_c = (1 + \sqrt{\gamma})^2$ \rightarrow integral term= 0.
- 3. Principal components $k \to \text{cut-off}$ for considered data distribution.

-01^{Sisk} Risk Risk

0.1

0.2

0.3

 $\kappa = k/n$

Results

Covariate-shift

Assumption. Train/source $C_S = V \Lambda_S V^{\top}$ and test covariance $C_T = V \Lambda_T V^{\top}$.

Theorem. Similar to in-distribution risk but scaled. But combinations of C_S , C_T here.

Results. Data generator with $\operatorname{Cov}(\boldsymbol{v}_S, \boldsymbol{v}_T) = \sigma_\ell^2 \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$.

Observation.

Conclusion

Summary.

Guide to choosing k.

Limitations.

- antees.

1. Same behaviour as for in-distribution data.

2. Higher correlation $\rho \rightarrow \text{lower risk.}$

• Asymptotic risk of PCR under spiked covariance model. Tool: random matrix theory.

• Guarantee: widely used model & real-world data structures

• High k increases variance contribution.

• For $0.5 < \gamma < 2$ a suitable k has little effect.

• Linear supervised setting.

• Asymptotic results — no finite sample guar-