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Abstract
Myocardial infarctions (MIs) are often missed
in the emergency department. In managed set-
tings deep learning models have shown promise
in electrocardiogram (ECG) classification. How-
ever, in a real-world scenario there is a lack
of high performing models for classification of
MIs. We developed a ResNet-based deep neu-
ral network to classify the ECG between non-
ST-elevation MI (NSTEMI), ST-elevation MI
(STEMI), and control status in the more chal-
lenging real-world setting. In a test set, our
model discriminates STEMIs/NSTEMIs with
an AUROC of 0.85/0.76 and a Brier score of
0.10/0.18. The model also generalizes well and
obtains a similar performance on an additional
test set collected in the months following the ini-
tial collection and that does not overlap tempo-
rally with the set used for developing the model.
Our results are on par with human-level perfor-
mance reported in previous studies for STEMIs
and above human-level for NSTEMIs.

1. Introduction

Emergency department care costs are high (Galarraga
and Pines, 2016) and rising (Lane et al., 2020) in devel-
oped societies. Based on limited data in a chaotic en-
vironment, emergency doctors must make quick deci-
sions about patients’ probabilities for many diagnoses
and risks. Diagnostic error is commonplace (Medford-
Davis et al., 2016; Moonen et al., 2017), and there
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is need for decision support systems (Wright et al.,
2019). The emergency department handling of my-
ocardial infarctions (MIs) is especially precarious with
10-50,000 missed cases per year at emergency depart-
ments in the United States (Sharp et al., 2021). Less
than half of those hospitalized for a suspected MI are
diagnosed with it (Caulfield and Stephens, 2018).
The ECG can reveal large ST-elevation MIs

(STEMIs), but non-ST-elevation MIs NSTEMIs are
often unremarkable to the human eye on the ECG.
Physicians at all training levels have deficiencies in
ECG interpretation, with an accuracy of 0.69 overall
for practicing physicians and 0.75 for cardiologists
in controlled test settings (Cook et al., 2020), with
similar numbers reported for STEMIs (McCabe et al.,
2013; Soares et al., 2019). Diagnosing NSTEMIs with
ECGs by physicians is much lower rendering this a
particularly difficult problem for humans.
Finding NSTEMIs early and starting treatment

improves patient outcomes (Hamm et al., 2011). Since
NSTEMIs are impossible to reliably diagnose without
blood test, automatically detecting NSTEMIs from an
ECG at the emergency department would enable early
treatment and potentially prevents missing NSTEMIs.
Deep learning has shown recent promise in ECG

classification (Siontis et al., 2021), for common ECG
diagnoses (Ribeiro et al., 2020) as well as for traits
with unclear ECG diagnostic criteria or those not usu-
ally thought of as ECG diagnoses (Cohen-Shelly et al.,
2021; Raghunath et al., 2020; Tison et al., 2019). Even
ECGs that appear normal to the human eye carry
useful information for deep models (Attia et al., 2019;
Raghunath et al., 2020). In the diagnosis of MI deep
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learning is promising (Cho et al., 2020; Liu et al.,
2021), but many studies have used limited (Al-Zaiti
et al., 2020; Makimoto et al., 2020) or managed (Al-
Zaiti et al., 2020; Cho et al., 2020; Liu et al., 2021;
Makimoto et al., 2020; Zhao et al., 2020) datasets.
Deep learning models using managed datasets and
those that sought to discriminate STEMIs often re-
ported super-human-level performance (Cho et al.,
2020; Liu et al., 2021). The very few studies that used
more real-world-like samples or sought to discrimi-
nate also NSTEMIs generally reported human-level
or sub-human-level performance (Liu et al., 2021).
We develop and validate a deep learning based

model for ECG decision support in diagnosing MIs in
the emergency department. We tackle a difficult real-
world scenario with immediate benefits for practicing
physicians. Our study presents a tentative solution of
an unsolved problem using a novel dataset.

2. Methods

Data Sample We utilize a routine 10-second 12-
lead ECGs from adult patients attending emergency
departments in the Stockholm region between 2007
and 2016, that had such a high risk of an acute coro-
nary syndrome that they were admitted to a coronary
care unit, after obtaining an ECG. After applying the
sequence of filters (Figure S1), to ensure inclusion of at
event before-treatment ECGs as well as confirming the
outcome label, 10,583 patients with 12,311 coronary
care unit admissions and 16,628 ECGs were available
for analysis. For the labels we use of the high-quality
SWEDEHEART registry1. The labels are the decision
of a discharging physician that followed the entire pa-
tient journey during hospitalisation (including blood
testing for all patients). We can then tie the labels
to available electronic health records and national
records, e.g. to connect MI patients to increased Tro-
ponin levels (Table S1). Details on data sources and
exposures, outcomes are in Appendix A.1 and A.2

Training and test datasets The studied patients
were divided for training and test in 70%/30% splits
with records from the same patient in the same split.
Patient characteristics fluctuated with time and divid-
ing the 30% test split into two containing 20% and
10% of the complete data allows us to test the model
in different scenarios. The 10% split contains exams
with admission date of 2016-01-01 or later which has

1. ucr.uu.se/swedeheart/dokument-sh/variabellista, accessed:
2021-06-25

no temporal overlap with the training dataset. This
split can be used to assess the model susceptibility
to temporal shifts and trends. We denote this split
the temporal test split. The 20% split was sampled at
random from entries with an admission date before
2016-01-01, the same period as for the training split.
We denote this split the random test split.

Data pre-processing Data pre-processing steps
are described in Figure S2. Next to the ECG tracings
as input, we limited ourselves to age and sex, to
increase the transportability of the model. The output
are the probabilities of the three mutually exclusive
outcome classes: NSTEMI/STEMI/control.

Model architecture Our model is an extension of
Ribeiro et al. (2020), in which the model classifies six
ECG abnormalities (Alkmim et al., 2012). We used a
ResNet based architecture for unidimensional signals
to process ECG tracings. Age and sex were passed
through a fully connected layer and concatenated with
the output of the ResNet. The resulting features were
used in the linear classification layer. The model archi-
tecture with its extensions and the hyperparameters
are described in Figure S3 and Appendix A.3.

Generally, ensembles of neural network models im-
prove predictive performance (Hansen and Salamon,
1990) and model calibration. We therefore expanded
our model as an ensemble of five model members. The
logits were averaged to obtain the final prediction.

Model calibration While discrimination (e.g. AU-
ROC) is important, it contains no information about
the reliability of probability estimates. Calibration,
i.e. if the model’s probability estimates reflect the
ground truth empirical class frequencies, is an im-
portant model property for clinical use. Since deep
models are shown to be poorly calibrated (Guo et al.,
2017), one of our concerns regards calibration.

As metrics to evaluate calibration, we focus on the
Expected Calibration Error (ECE) and the Brier score
estimated on the test sets, see Appendix A.5. We
visualize calibration plots of our model in Figure S10.

Model analysis To identify possible patterns in the
STEMI/NSTEMI classification, we highlight parts of
the ECG that the model focuses on for its prediction
using Grad-CAM plots (Selvaraju et al., 2017). Visu-
alization are generated in two steps: In a forward pass
we compute the activations of the neural network in
an intermediary layer (we use the first convolutional
layer). In a backward step we compute the gradients
corresponding to these activations. The gradients are
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averaged to get the proportional importance of each
channel, which is then used to compute a proportional
mean of the activations. Positive values were plot-
ted as purple disks overlaid on top of the ECG, with
size proportional to magnitude. One cardiologist (JS)
inspected the Grad-CAM plots from ten cases with
highest probability for STEMI/NSTEMI, and selected
four representative plots each for illustration.

3. Results

Of the included 12,311 coronary care unit admissions,
3,993 were recorded with NSTEMI, 1,340 with STEMI,
and 6,978 without MI. Clinical characteristics of the
study sample are listed in Table S3 and stratified for
our data splits in Table S2. Patients’ age and admis-
sion date distributions are shown in Figures S6, S7.
The performance of our model in the two test

datasets is listed in Table 1. Note that there exists no
direct baseline since we use a novel dataset and there
are no openly accessible datasets with NSTEMIs. In
the random test set, STEMIs could be discriminated
with fair precision, with an AUROC of 0.85 and a
Brier score of 0.10. Discrimination of NSTEMIs was
poorer, with an AUROC of 0.76 and a Brier score
of 0.18. Therefore, our model achieves human-level
performance in classifying STEMIs and super-human-
level performance for NSTEMI. The performance in
the temporal test set, that did not overlap in time
with the development set, was similar. Controls were
classified with lower accuracy in the temporal test set.

Further results are shown in Figure 1. The left plot
shows the development of the model with incorpora-
tion of more advanced model and training techniques
compared to Ribeiro et al. (2020). The middle and
right plots show the receiver-operator and precision-
recall curves on the temporal test split.
Inspecting Grad-CAM plots yielded new insights.

Figure 2 illustrates STEMIs and an NSTEMI correctly
classified with high probability. These illustrations are
cropped versions of Figure S4 and S5. For STEMIs in
Figure 2 (left) the model focuses on the ST-segment,
where a human would look. In Figure 2 (middle),
the model focused on the down-sloping part of the
T-wave, where a human would not focus for a STEMI
diagnosis. For NSTEMIs in Figure 2 (right) the model
focuses on the ST-segment. Humans would agree
with the model that the ST-segment depressions look
potentially ischemic; but would not suspect ischemia
based on the ECGs in panels C and D of Figure S5.
More results are attached in Appendix B.

Table 1: Performance of the model in the two
test sets. Given are means and standard
deviations over ten different trained models;
each of which is an ensemble consisting of
five model members. We compute AUROC,
Average Precision and Brier score for STEMI
vs Control and NSTEMI vs Control.

Random Temporal

Accuracy Control 0.75 (0.007) 0.44 (0.011)
NSTEMI 0.57 (0.012) 0.72 (0.010)
STEMI 0.71 (0.013) 0.72 (0.020)

AUROC NSTEMI 0.76 (0.003) 0.74 (0.003)
STEMI 0.85 (0.002) 0.82 (0.003)

Avg. Prec. NSTEMI 0.69 (0.003) 0.64 (0.005)
STEMI 0.76 (0.005) 0.64 (0.006)

Brier NSTEMI 0.19 (0.001) 0.27 (0.002)
STEMI 0.10 (0.001) 0.13 (0.001)

ECE Multiclass 0.25 (0.004) 0.11 (0.012)

4. Discussion

This study deals with the relevant population of all-
comer patients at emergency departments, represent-
ing the real-world experience for doctors with ECGs.
Notably, in Sweden pre-hospital ECGs (e.g. in ambu-
lances) are sent to coronary care units for immediate
diagnosis. Hence, obvious STEMI cases bypass the
emergency department and transfer straight to the
coronary intervention lab upon arrival to hospital,
rendering the STEMIs in the present study the less
obvious cases and the walk-ins. Further, we did not ex-
clude difficult cases, comorbidities, or previous MIs2.
Other studies have shown similar performance to

ours in representative settings (Liu et al., 2021), with
reports of very good performance in managed set-
tings (Cho et al., 2020; Liu et al., 2021). Our study
differs as it is a multicenter study using data of con-
secutive patients with very few exclusions, and with
labeling by many doctors. As controls, our study uses
all hard cases that raised a high suspicion of a MI
and were admitted to a coronary care unit, and no
easy non-MI cases, which sets it apart from previous
studies that included such controls (Liu et al., 2021)
or not clearly described the controls (Cho et al., 2020).

2. Except for technical reasons, we removed potentially linked
hospitalizations for the same MI, and LBBBs, which cannot
per se identify an acute MI from a single ECG, but need a
prior ECG for comparison.
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Figure 1: (Left) AUROC of model improvements for different training extensions. (Middle) ROC curve for
temporal test split. All 10 seeds are plotted. Shown is class vs all. (Right) Precision-Recall curve
for temporal test split. Iso-F1 curves in the background. Full figures in Appendix A.4 and B.

Figure 2: Correctly classified examples with high probability with corresponding Grad-CAM plots. We show
leads V4 and V5 of the examples. (Left) STEMI with typical ST-segment elevation highlighted.
(Middle) STEMI with another feature highlighted that is not typical to doctors (establishing
the relevance of it would need additional study). (Right) NSTEMI with typical but unspecific
ST-segment depression highlighted.

The Grad-CAM plots in Figures S4 and S5 provide
important insights: In half of the panels the model
recognizes the same features that humans would. In
the other half the model finds features that are novel
or imperceptible to physicians, indicating possible
traits. Variants of such model analysis can likely give
useful clinical and pathophysiological clues in many
medical fields.

Our model’s misclassifications as STEMI follows
known clinical and machine learning patterns, with
myocarditis as an important impostor (Tanguay et al.,
2019). The conditions over-represented in those mis-
classified as NSTEMI were logical to some extent,
such as aortic stenosis and pulmonary edema; the
late-stage diabetes traits more surprising.

An important limitation is the lack of an external
validation sample. We did hold out the 10% most
recent episodes for a temporal test set; many circum-
stances in that set would be similar to those in the
training set, but a restructuring of the Stockholm re-
gion emergency department logistics during the study
period did change the composition of the sample. This
likely explains the poorer accuracy of controls in the

temporal test set than in the random test set. Fur-
thermore, the label in our study was determined at
discharge from the coronary care unit, when the whole
care episode could be summarized. The ECGs in the
test sets of this study may hence not always be the
ones guiding the final diagnosis. We mitigate that
to some extent by using multiple ECGs if available
within the day before admission in the training set,
but not in the test sets. On the other hand, the hind-
sight allows for more stable labels for the episode as a
whole, which is the ultimate goal for the classification.

We present a deep learning model with performance
that is comparable to cardiologist performance re-
ported in previous studies (Cook et al., 2020) in clas-
sifying STEMIs and above human performance for
NSTEMIs. We do so in a real-world sample of emer-
gency department patients with a high suspicion of
acute coronary syndrome. Considering the high and
rising emergency department costs and the high num-
bers of missed MIs, our model could be of clinical
value for ECG decision support at this stage, with
promise of further performance improvement.
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Appendix A. Supplementary Methods

A.1. Data sources

Adult patients (≥ 18 years old) with available emergency department data from 6 emergency departments in
the Stockholm region, Sweden, between 2003 and 2017 were collected. The sample was linked to national
registries (the in-patient, prescribed drug, and death registries), national quality registries (SWEDEHEART
[Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated
According to Recommended Therapies; a Swedish nation-wide quality register] sub-registries RIKS-HIA
[Register of Information and Knowledge About Swedish Heart Intensive Care Admissions] and SCAAR
[Swedish Coronary Angiography and Angioplasty Registry]), as well as a regional database of ECGs (Karolinska
ECG database) and electronic health records. All data sources covered the time period 2007-2016 or longer.
Characteristics have been described for STEMI (Szummer et al., 2017) and NSTEMI (Szummer et al.,
2018) patients in SWEDEHEART during the present study period, and the study sample has been partially
described previously (Af Ugglas et al., 2020).
The procedure and criteria used to define the study sample are described in Figure S1. In total, 23,244

patients had at least one registered coronary care unit admission at any time and at least one valid ECG
recording at any time. We apply the filters in Figure S1 to ensure inclusion of at-even before-treatment
ECGS (ECG collected on or one day before the day of the coronary care unit admission without any record
of recent intervention) as well as confirming the outcome label (NSTEMI/STEMI/control status available,
and ICD10:I21 without a left bundle branch block for the myocardial infarctions) which both reduces the
sample size to the studied 10,583 patients.

The outcome label used, NSTEMI/STEMI/control, is the standard INFARCTTYPE variable in SWEDE-
HEART RIKS-HIA. It captures the view of the whole cycle of care by the attending cardiologist at time of
discharge from the coronary care unit, who has access to all relevant patient data, including but not limited
to singles ECGs, continuous ECG monitoring, cardiac enzyme series and other lab data, and angiographic
and echocardiographic results. Regular monitoring of the SWEDEHEART registry shows a data accuracy of
around 96% (Jernberg et al., 2010).

The study was approved by the Swedish Ethical Review Agency, application number 2020-01654.

A.2. Exposures and outcomes

High-quality data on the exposures and outcomes were available for all included patients from discharge
records from the emergency departments, from linked hospitalizations, and from the SWEDEHEART registry.
Definitions used are listed in Table S3. As exposures, we used digital ECG data, age and sex, as in a previous
study (Cho et al., 2020). Standard 10-second 12-lead ECG recordings sampled at 250 to 500Hz were used;
8 leads were used in the present study as 4 of the standard leads are functions of these 8 and are hence
redundant. The outcome label was NSTEMI/STEMI/control status, as registered in SWEDEHEART by
the attending cardiologist at time of discharge from the coronary care unit. Details are described in the
Supplementary Methods. We only included cases with complete data on these few exposures and outcomes.

A.3. Model architecture

Our model is an extension of a previous study (Ribeiro et al., 2020) where the authors performed an extensive
hyperparameter search. We performed on top a study about the scalability of the model. We scaled model
depth by factors of {1, 2, 3, 4} and width by {1, 1.5, 2} (only for depth up to 2 because of model size issues)
and found that a depth scaling with a factor of 2 from the original study helps performance, which yields
the ResNet model structure of Figure S3. We extend the model with SE blocks. We experiment with SE
reduction factors of {2, 4, 8, 16, 32}. For the embedding of the phenotypes age and sex we test with adding
{[batch normalization, ReLU], ReLU, [batch normalization, ReLU, Dropout (0.2)]} after the linear layer and
find that ReLU activation alone is the best option. The size of the linear layer for the phenotypes embedding
is heuristically chosen.

8



ECG Diganosis of Myocardial Infarctions

A.4. Model training procedure

The model was trained by minimizing the cross entropy loss using the Adam optimizer with default parameters
and learning rate of 10−3 for 200 epochs using a batch size of 256. We used a cosine learning rate
scheduler (Loshchilov and Hutter, 2017) which reduces the learning rate according to a cosine function from
the initial learning rate to zero over the epochs. Initially, we warmed up the learning rate linearly over 15
epochs which helps to improve generalization. In addition to the dropout with dropout probability of 0.5
within the ResNet blocks we used dropout on the linear classifier with value 0.2. Furthermore, we regularized
with weight decay of 0.005 and label smoothing (Müller et al., 2019) with value of 0.15. In addition to the
training data set we made use of ECG exams of patients who had multiple exams in the same coronary care
unit admission for training. We consider this as a form of data augmentation since these exams have the
same label but are recorded at different times and therefore with a different state of the patient and possibly
placement of the ECG leads. We denoted this additional dataset an augmentation dataset, and included it
for training but not for validation. This is common practice in deep learning training in order to get correct
validation metrics which resemble the test dataset.

We evaluated the hyperparameters with a 5-fold cross-validation approach where the metrics were averaged
over all folds. Our hyperparameter tuning objective was to reduce overfitting while increasing accuracy,
AUROC, average precision and model calibration in terms of ECE.

We consider the basic model (Ribeiro et al., 2020) with the depth scaling factors and without SE blocks
and iteratively extend the model training procedure. First, we test different training and validation batch
sizes {32, 64, 128, 256} and find no significant performance differences and therefore choose 256 which yields
the fastest training speed. For the optimizer and learning rate we experiment with {SGD, ADAM} (Kingma
and Ba, 2015) both using learning rates in {0.5, 0.1, 0.01, 0.001} and momentum {0.7, 0.8, 0.9} for SGD. We
denote the model trained with these settings as the baseline model.

We extend the training procedure iteratively with eight training procedure and architecture options following
previous recommendations of modern ResNet tuning to improve model performance (Bello et al., 2021; He
et al., 2019). For each of the options we choose the best performing parameters before checking the next
extension. We highlight the best performing parameter for an option italic. 1. Training dataset: only training
data or with additional augmentation dataset. 2. Learning rate scheduler: multistep learning rate scheduler
with decrease by factor 10 at epoch 75, 125, 175 or cosine learning rate scheduler with linear warmup for
{0, 5, 10, 15, 20} epochs (Liu et al., 2020). 3. Label smoothing: smoothing value {0.0, 0.05, 0.1, 0.15, 0.2}. 4.
Additional dropout on the final linear layer with value {0.2, 0.3, 0.4, 0.5}. 5. Re-evaluation of weight decay
value with value {0.05, 0.01, 0.005, 0.001, 0.0005}. 6. Additional SE net with reduction factor {32, 16, 8, 4, 2}. 7.
Additional age and sex embedding with architecture choice as described above. 8. Additional ensemble-based
model with heuristically chosen five ensemble members.

The results for the eight options are shown in Figure S8 for accuracy, AUROC, average precision and ECE
as examples. The plots show mean and standard deviation over the five cross-validation folds. This indicates
that each option increases at least one of the metrics on average and does not reduce the others significantly.
Not that ECE should be minimized.

A.5. Model calibration

We use ECE and Brier score as metrics to evaluate model calibration. ECE is the weighted absolute difference
between the class membership and the estimated probability for that class averaged over 15 bins, while the
Brier score measures the average squared error on the probability scale. Both metrics are applicable to both
binary and multiclass problems.
We tried to improve upon the original calibration by temperature scaling (Guo et al., 2017), vector

calibration (Guo et al., 2017), and Dirichlet calibration (Kull et al., 2019). None of those methods succeeded
in improving the model calibration. Further work is necessary to investigate the possibility to improve model
calibration beyond our current setting.
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A.6. Model evaluation

We tested the over/underrepresentation of inpatient care diagnoses at the time of the cardiac intensive
care among correctly classified versus misclassified patients with a predicted probability > 0.5 in pairwise
independent tests.

Appendix B. Supplementary Results

While each of the model and training modifications to the original model architecture (Ribeiro et al., 2020)
were effective in some metrics and overall contributed to the performance of our model, Figure S8 shows
that two changes were more important: the extension of our original dataset with the augmentation training
dataset, and the use of an ensemble-based model.

Additionally to the results in Figure 1 (middle and right) where the AUROC and precision-recall curve for
the temporal test split are shown, Figure S9 shows the curves for the random test split.

Characteristics of hospitalizations with misclassified ECGs are described in Table S4. Among the misclassi-
fied ECGs, those misclassified as STEMI more often had myocarditis, other severe infections, emaciation,
neurological traits, and adverse drug reactions among the diagnoses at the coronary care unit hospitalization;
those misclassified as NSTEMI more often had late-stage diabetes, aortic stenosis, and pulmonary edema.

Appendix C. Supplementary Discussion - Limitations

More limitations than the ones mentioned in section 4 are the following. The sample size was limited, albeit
on par with other similar studies (Cho et al., 2020). Sample sizes needed for machine learning methods are
often tenfold larger than those needed for traditional statistical modeling (van der Ploeg et al., 2014).
While the calibration of our model was better than that of comparable models, there is still room for

improvement; this is an underappreciated property in general.
We did not consider transferring learned features, only model architecture, from a previous study (Ribeiro

et al., 2020). An exploration of potential improvements in model convergence speed and final performance
boost by pretraining on a different ECG classification task with a dataset in a different context may be useful,
but may also introduce model biases from the other dataset.
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Appendix D. Supplementary Figures

Figure S1: Derivation of the study sample. Data linkage of Stockholm region emergency department
visits to national and regional registries and electronic health records, together with inclu-
sion/exclusion criteria applied to define the study sample. SWEDEHEART, Swedish Web-system
for Enhancement and Development of Evidence-based care in Heart disease Evaluated According
to Recommended Therapies; RIKS-HIA, Register of Information and Knowledge About Swedish
Heart Intensive Care Admissions.
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Figure S2: Data pre-processing. We re-sampled all ECGs to 400 Hz and zero-padded to a fixed length of
4096 samples, since the convolution-based model requires a fixed input size. For duplicated ECGs
with identical data and collection time the first copy was kept and ECGs where one or more
required leads were missing or contained all-zero entries were removed. We used one-hot encoding
for sex and normalized the age with mean and standard deviation of the training dataset.
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Figure S3: Deep neural network model architecture. The left panel is a high-level model for ECG
classification consisting of one line to extract features from the ECG exam and one for features
from phenotypes age and sex. The light green block contains a convolutional layer followed by
a batch normalization for rescaling the output and a ReLU activation function. This layer is
followed by four sets of residual blocks in light blue. The name of the block indicates the filter
size of the convolutions, the number of filters and the downsampling factor (if applicable). Note
that we downsample the signal by a factor of 1

4 in the beginning of each set of residual blocks.
The right panel illustrates the content of each residual block. Dropout is used after each nonlinear
activation function as regularization. Only the first residual block does not contain the first batch
normalization, ReLU and dropout layer since these layers are already applied after the initial
convolution layer. We extended the initial architecture (Ribeiro et al., 2020) with Squeeze and
Excite (SE) blocks with reduction factor of 16. This operation helps to weight the channel wise
information. Downsampling residual blocks consist in the residual skip connection (dashed lines)
of a MaxPooling operation followed by a convolutional layer with filter length 1 to match the
dimensions with the main branch for the summation. The remaining skip connections (full lines)
do not contain any operations since input and output dimensions of the residual block are equal.
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A B

C D

Figure S4: Four representative STEMIs correctly classified with high probability. Four Grad-
CAM plots of STEMIs correctly classified with high probability, highlighting the parts in the
ECG that the model focuses on for its prediction. Gradients corresponding to the activations in
the first convolutional layer of the neural network are averaged to get the proportional importance
of each channel, which is then used to compute a proportional mean of the activations. Positive
values obtained were plotted as blue disks overlaid on top of the ECG, with size proportional to
its magnitude.
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Figure S5: Four representative NSTEMIs correctly classified with high probability. Four Grad-
CAM plots of NSTEMIs correctly classified with high probability, highlighting the parts in the
ECG that the model focuses on for its prediction. Gradients corresponding to the activations in
the first convolutional layer of the neural network are averaged to get the proportional importance
of each channel, which is then used to compute a proportional mean of the activations. Positive
values obtained were plotted as blue disks overlaid on top of the ECG, with size proportional to
its magnitude.
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Figure S6: Distribution of admission age for cardiac intensive care admissions in overlayed his-
tograms, by control/NSTEMI/STEMI.
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Figure S7: Distribution of admission date in overlayed histograms, by control/NSTEMI/STEMI.
A decrease in number or controls admitted in 2014 due to administrative changes in the Stockholm
healthcare system, with a limitation of walk-ins at the Karolinska emergency department from
2014.

17



ECG Diganosis of Myocardial Infarctions

0.5

0.6

0.7

0.8

a
cc
u
ra
cy

Classwise Accuracy (↑)

control

stemi

nstemi 0.65

0.7

0.75

0.8

av
g.

p
re
ci
si
on

Avg. Precision (↑): Class vs Control

Ba
sel
ine

+B
as
eli
ne

Au
g

+L
R
sch

ed
ule

r

+l
ab
el
sm

oo
th
.

+F
C
dr
op
ou
t

+w
eig

ht
de
ca
y

+S
E-
Ne
t

+A
ge

Se
x

+E
ns
em

ble
0.7

0.75

0.8

0.85

0.9

au
ro
c

AUROC (↑): Class vs Control

Ba
sel
ine

+B
ase

lin
e A

ug

+L
R
sch

edu
ler

+l
ab
el
sm

oo
th.

+F
C
dro

po
ut

+w
eig

ht
dec

ay

+S
E-
Ne

t

+A
ge

Sex

+E
nse

mb
le0

0.05

0.1

0.15

0.2

E
C
E

ECE (↓)

Figure S8: Model improvements by tuning of hyperparameters. Evaluated metrics for hyperparam-
eter tuning. Classwise accuracy, average precision, Cstatistics and expected calibration error
(ECE) were evaluated. Shown is mean and standard deviation over the validation sets of the
5-fold cross-validation. The final model contains all model and training extensions. Arrows in the
title indicate the optimization objective. Aug, augmentation; LR, learning rate; label smooth,
label smoothing; FC, fully connected layer; SE-Net, squeeze and excite network.
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Figure S9: ROC and Precision Recall curves. Top row: Temporal test split, repetition from figure 1
(middle and right). Bottom row: Random test split. Each curve for the 10 seeds of our ensemble
based model are shown. Each curve is a class vs all curve, not a class vs control as in Table 1.
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Figure S10: Calibration of final model. Calibration plot (also called reliability diagram) for NSTEMI vs
all and STEMI vs all for both of our test sets. The grey solid lines indicate perfect calibration.
Black solid lines are LOESS fits and shaded areas are 95% bootstrap confidence intervals. Black
broken lines are fits resulting from logistic regressions using the estimated logits as the sole
predictors. Intercept denotes the intercept from the logistic models and should be as close to
zero as possible. Slope denotes the slope of the logistic regression fit and should be as close to 1
as possible. A slope > 1 indicates underfitting and a slope < 1 indicates overfitting with the
degree of under-/overfitting directly proportional to the absolute size of the slope. Eavg, E90
and Emax correspond to the average absolute error, the 90th percentile of the absolute error
and the maximum absolute error between the predicted probabilities and the LOESS fit.
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Appendix E. Supplementary Tables

Table S1: Clinical characteristics of the study sample Patient
characteristics of coronary care unit admissions included in the study,
by control/NSTEMI/STEMI outcome. Data are medians (quartiles)
or percent.

Control NSTEMI STEMI

Number of patients 6,978 3,993 1,340

Clinical characteristics at ED visit

Age 66.0 (56.0,76.0) 71.0 (62.0,81.0) 66.0 (57.0,77.0)
Male 61.6 65.9 73.7
Year 2012 (2010,2013) 2013 (2011,2015) 2013 (2011,2015)
Walked into ED 54.9 45.6 49.0
Presenting complaint:

Chest pain 69.7 72.2 72.0
Difficulty breathing 10.4 12.0 5.3
Abnormal rhythm 3.9 1.4 0.7
Malaise 1.2 1.5 2.2
Circulatory arrest 0.8 1.0 4.5

Cardiovascular diagnoses prior to ED visit*

Myocardial infarction 23.6 25.9 15.9
Unstable angina 15.0 11.4 5.1
Ischemic heart disease 45.6 42.7 23.1
Stroke 8.9 10.4 6.4
Peripheral artery disease 9.8 12.1 6.6
Heart failure 22.1 20.1 8.1
Atrial fibrillation 20.4 15.4 7.9
Cardiovascular disease 72.2 70.2 50.9

Drugs with >= 1 dispensation within one year prior to ED visit

Renin-angiotensin system 49.3 51.2 34.8
inhibitors

Calcium channel blockers 26.4 28.3 21.0
Beta-receptor blockers 54.8 50.0 32.3
Mineralocorticoid receptor 8.7 6.1 2.6
antagonists

Diuretics 33.3 34.3 18.1
Anti-arrhythmic drugs 1.9 0.5 0.4
Statins 46.6 41.4 23.8
Anticoagulants 13.7 8.9 4.6
Antiplatelets 48.6 48.6 27.2

Cardiac enzymes within ED visit or coronary care unit hospitalization**

Troponin I measured 10.3 8.4 12.3
Max troponin I (ng/L) 29.7 2300.0 18100.0

(29.7,60.0) (540.0,8000.0) (3300.0,50500.0)
Troponin T measured 80.1 84.6 85.5

Continued on next page
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Table S1 – Continued from previous page
Control NSTEMI STEMI

Max troponin T (ng/L) 13.0 249.0 1900.0
(9.0,39.0) (84.8,778.2) (550.5,4817.5)

NTproBNP measured 20.9 18.8 15.1
Max NTproBNP (ng/L) 1190.0 2635.0 2740.0

(257.5,3972.5) (678.5,8067.5) (649.0,8160.0)

Main cause of coronary care unit hospitalization***

Myocardial infarction 0.0 96.1 97.6
Unstable angina 8.5 4.1 1.3
Ischemic heart disease 21.1 96.5 97.6
Stroke 0.3 0.8 0.7
Peripheral artery disease 0.3 0.1 0.1
Heart failure 7.0 1.6 0.8
Atrial fibrillation 6.6 0.5 0.3
Cardiovascular disease 47.6 98.0 99.1

Mortality after coronary care unit admission

30-day all-cause death 1.4 6.1 11.0
In-hospital all-cause death 1.1 5.1 9.7
*Prevalent disease based on any diagnosis position, inpatient and outpatient specialist care combined.
**Combining all troponin T/I laboratory measurements from the Stockholm region as well as high-sensitive
troponin T/I from SWEDEHEART. Maximum of all available measurements within the time window reported.
***Primary diagnosis from inpatient specialist care. ED, emergency department; NTproBNP, N-terminal
pro-B-type natriuretic peptide.

Table S2: Clinical characteristics of the study sample, strat-
ified by control/NSTEMI/STEMI and training/test set.
Data presented as median (interquartile range) or percentages. Ab-
breviations: cont. is control, NST. is NSTEMI, ST. is STEMI.

Test Random Test Temporal Training
con. NST. ST. con. NST. ST. cont. NST. ST.

Baseline characteristics (at ED/HIA admission)

Age 66.0 72.0 65.5 66.0 73.0 67.0 66.0 71.0 67.0
(56.2, (62.0, (57.8, (55.0, (63.0, (56.0, (56.0, (62.0, (57.0,
75.0) 82.0) 76.2) 75.0) 81.0) 76.0) 76.0) 81.0) 78.0)

Year 2012 2013 2012 2016 2016 2016 2012 2013 2013
(2010, (2010, (2010, (2016, (2016, (2016, (2010, (2011, (2010,
2013) 2014) 2013) 2016) 2016) 2016) 2013) 2014) 2014)

Walked 57,5 49,3 53,7 68,0 53,6 53,4 54,3 44,5 47,5
into ED
Presenting complaint
– Chest pain 69,1 72,7 72,0 72,8 69,6 78,8 69,5 73,0 71,2
– Difficulty 11,9 9,8 3,0 11,2 14,4 4,2 10,2 11,7 5,8

Continued on next page
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Table S2 – Continued from previous page
Test Random Test Temporal Training

con. NST. ST. con. NST. ST. cont. NST. ST.

breathing
– Abnormal 3,3 1,5 1,2 3,0 2,6 0,8 4,1 1,2 0,8
rhythm

– Malaise 1,3 1,5 1,2 1,2 1,3 0,8 1,2 1,4 2,5
– Circulatory 0,9 0,6 2,4 2,4 1,6 6,8 0,5 0,7 4,5
arrest

Cardiovascular diagnoses prior to ED visit*

AMI 25,0 28,2 13,4 11,8 23,2 11,0 23,9 26,7 18,0
Unstable 15,8 12,9 1,2 8,9 11,1 3,4 15,2 11,1 6,0
angina
CHD 48,2 45,3 18,3 36,7 38,6 18,6 46,0 43,5 25,9
All stroke 10,7 9,8 5,5 9,5 10,1 4,2 8,6 10,4 7,1
PAD 9,5 11,7 1,8 5,9 10,1 7,6 10,2 12,2 6,8
HF 23,2 17,3 4,9 11,8 19,6 4,2 22,5 20,4 9,6
Afib 18,6 15,0 4,3 18,3 17,0 5,1 20,9 15,4 8,8
Chapter I 75,3 69,7 43,9 69,8 69,6 50,8 72,4 70,1 52,6

Drugs with 1+ dispensation 1 year prior ECG

RAAS 51,1 47,2 28,7 52,7 59,5 33,9 49,4 51,2 35,8
CCB 27,3 28,2 17,1 27,8 30,7 20,3 26,2 28,0 21,2
Beta block 57,3 51,6 28,0 47,3 46,7 23,7 55,2 50,9 34,5
MRA 7,4 5,8 1,8 4,7 4,9 2,5 9,4 6,5 2,9
All diuretics 33,2 35,9 15,9 19,5 32,7 11,0 34,3 34,8 20,3
Antiarrhytmia 2,5 1,3 0,0 1,8 0,0 0,0 1,8 0,4 0,3
Statins 48,5 40,7 22,0 48,5 36,3 26,3 46,5 42,2 24,3
Anti- 14,0 8,1 2,4 16,0 11,8 4,2 13,6 8,9 4,8
coagulation
Antiplatelet 52,8 50,5 23,8 45,0 41,2 18,6 48,4 49,9 29,3

Cardiac enzymes within ECG date and HIA**

Has troponin I 12,0 10,9 14,6 0,0 0,3 0,0 10,5 9,5 14,2
Max troponin 12.0 210.0 1410.0 21.0 195.0 2705.0 12.0 250.0 1945.0
I (ng/L) (9.0, (67.0, (432.2, (12.0, (80.5, (889.8, (9.0, (82.0, (519.0,

32.0) 630.0) 5452.5) 63.5) 614.5) 5972.5) 36.0) 779.0) 4687.5)
Has NT- 19,9 13,6 11,6 28,4 16,7 20,3 20,4 18,7 14,1
proBNP
max NT- 1190 1540 5890 930 2190 1310 1250 2925 2975
proBNP (274.0, (592.0, (940.0,1 (219.0,2 (455.0,5 (585.0, (271.8, (829.2, (779.8,
(ng/L) 4350.0) 4440.0) 2050.0) 640.0) 800.0) 5175.0) 3942.5) 8082.5) 8995.0)

Main cause of hospitalisation with ECG date and HIA discharge date***

AMI 0,0 97,1 97,0 0,0 97,4 96,6 0,0 95,9 97,9
Unstable 9,0 3,1 1,2 25,4 7,5 0,0 7,9 3,8 1,6
angina
CHD 22,2 97,3 97,0 37,9 97,4 96,6 20,6 96,4 97,9
All stroke 0,5 1,0 0,0 0,0 1,0 0,8 0,3 0,7 1,0

Continued on next page
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Table S2 – Continued from previous page
Test Random Test Temporal Training

con. NST. ST. con. NST. ST. cont. NST. ST.

PAD 0,1 0,0 0,0 0,6 0,0 0,0 0,3 0,1 0,1
HF 7,9 1,3 1,2 5,3 1,0 0,0 7,0 1,6 0,8
Afib 5,8 0,6 0,6 1,8 0,3 0,0 6,9 0,5 0,3
Chapter I 47,0 98,5 98,2 65,7 98,7 99,2 46,5 97,8 99,1

30-day mortality after HIA admission

All-cause 1,4 5,6 10,4 1,2 6,2 11,0 1,3 5,9 11,2
All-cause, 1,0 4,8 9,1 1,2 4,9 10,2 1,0 4,9 9,9
inhospital
All-cause, 0,2 2,9 8,5 0,6 2,3 9,3 0,0 2,6 8,7
inhospital,
AMI
All-cause, 0,7 3,8 8,5 1,2 3,6 10,2 0,5 3,6 9,3
inhospital,
Chapter I
*Prevalent disease based on any diagnosis position, inpatient and outpatient specialist care combined.
**Combining all troponin T/I laboratory measurements from Karolinska as well as high-sensitive troponin
T/I from SWEDEHEART. Maximum of all available measurements within the time window reported.
***Primary diagnosis from inpatient specialist care.

Table S3: Definitions used.
Diagnosis/intervention/treatment Codes

Diagnosis (ICD10)

Acute myocardial infarction I21
Unstable angina I20.0
Coronary heart disease I20-I25
All stroke I60-I64,G45
Peripheral artery disease I70-I74,I77.(3|6|8),I79
Heart failure I50
Atrial fibrillation I48
Chapter I I

Surgical codes (KVÅ)

PCI/CABG FNG(00|02|05|10|96),FNC,FND,FNE

Treatment (ATC)

RAASi C09
Calcium channel blocker C08
Beta blocker C07
MRA C03DA
All diuretics C03
Anti-arrhytmia C01B
Statins C10AA
Anti-coagulation B01A(A|E|F)
Anti-platelet B01AC
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Table S4: Over-/underrepresented diagnoses among misclassified cases. Over-/underrepresented
diagnoses when comparing correct classifications with misclassifications for a given class label in
a general independence test. All diagnoses within the coronary care unit admission are included
(all diagnosis positions). All results with a false discovery rate (Benjamini-Hochberg) < 0.01 are
reported.

ICD10 code Odds ratio Class label Misclassification

M90 Inf control NSTEMI
Z89 Inf control NSTEMI
A04 Inf control STEMI
I22 Inf control STEMI
E34 Inf control STEMI
E42 Inf control STEMI
A41 Inf NSTEMI STEMI

G90-G99 141,8 control STEMI
I97 68,4 control STEMI
J09 68,4 control STEMI
J10 68,4 control STEMI
T88 34,5 control STEMI
I24 23,0 control STEMI
I46 9,8 control STEMI
I42 9,4 control STEMI
J81 9,4 control NSTEMI
I40 6,8 control STEMI
I35 3,8 control NSTEMI
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