ResNet-based ECG Diagnosis of Myocardial Infarction in the Emergency Department

<u>Daniel Gedon</u>^{1,*}, Stefan Gustafsson^{1,2,*}, Erik Lampa¹, Antônio H. Ribeiro¹, Martin J. Holzmann³, Thomas B. Schön¹, Johan Sundström^{1,4}

¹Uppsala University, Sweden;

²Sence Research AB, Sweden;

³Karolinska University Hospital and Karolinska Institutet, Sweden;

⁴University of New South Wales, Australia;

*equal contribution.

NeurIPS 2021 workshop Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. Online, December 14, 2021

Background

- Emergency Department (ED)
- Myocardial Infarctions (MIs):
 - 9M deaths/year, 200M disability-adjusted life years/year, and rising.
 - False negatives: 10-50,000 missed cases/year at EDs in the United States.
 - False positives: Less than half of those hospitalized for a suspected MI are diagnosed.
 - \rightarrow High burden on public health.
- Electrocardiogram (ECG):
 - ST-elevation MI (STEMI) \rightarrow detect in ECG
 - non-ST-elevation-MI (NSTEMI) \rightarrow require blood testing

Background

Baselines:

- Human baseline (cardiologists): 75% acc. for STEMI¹; much lower for NSTEMI.
- Deep learning models reach super-human performance but:
 - only classify ${\sf STEMIs}^2$
 - use managed data sets^{2,3}

Goal: Provide well-calibrated prob. for STEMI/NSTEMI from ECGs at the ED.

Our contribution:

- 1. Extract a novel data set resembling the real-world setup.
- 2. Deep learning based model for diagnosing MIs in the ED.

 $^{^1{\}rm McCabe}$ et al., "Physician accuracy in interpreting potential ST-segment elevation myocardial infarction electrocardiograms".

²Cho et al., "Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography".

³Liu et al., "A Deep-Learning Algorithm for Detecting Acute Myocardial Infarction".

Data Set

- Standard 10 seconds 12-lead ECGs.
- Adult patients at local ED visits in Stockholm region between 2007 and 2016.
- High risk patients \rightarrow admitted to coronary care unit (CCU).
- Labels:
 - From SWEDEHEART registry⁴
 - By discharging physician that followed entire patient journey during hospitalisation.
- Filter to ensure:
 - inclusion of at event before-treatment ECGs
 - availability of outcome label

 \Rightarrow real-world scenario for unsolved problem

⁴https://www.ucr.uu.se/swedeheart/dokument-sh/variabellista

Data Set

Splitting of the data set:

- Use repeated recordings during training as a form of data augmentation.
- Records from the same patient in the same split.
- Preprocess: Remove low frequency baseline, re-sample, zero-pad.

Model Architecture

Model Training

- Baseline from Ribeiro et al.⁵
- Results for 5-fold cross-validation:

AUROC (\uparrow) : Class vs Control

⁵Ribeiro et al., "Automatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network".

Results - Main

- Novel data set for unsolved problem \rightarrow no direct baseline available.
- Results over 10 model seeds:

		Random	Temporal
AUROC (↑)	NSTEMI	0.76 (0.003)	0.74 (0.003)
	STEMI	0.85 (0.002)	0.82 (0.003)
AUPR (↑)	NSTEMI	0.69 (0.003)	0.64 (0.005)
	STEMI	0.76 (0.005)	0.64 (0.006)
Brier (↓)	NSTEMI	0.19 (0.001)	0.27 (0.002)
	STEMI	0.10 (0.001)	0.13 (0.001)
ECE (↓)	Multiclass	0.25 (0.004)	0.11 (0.012)

 \Rightarrow Super-human-level performance

 $\mathsf{Grad}\text{-}\mathsf{CAM}$ plots \rightarrow identify patterns of the model

- ST-segment elevation
- typical for humans

- Down-sloping T-wave
- untypical for humans

NSTEMI

- ST-segment depression
- \bullet humans would not suspect a MI

- More general patient population: All patients at ED
- Data set statistics:

		<i>Current</i> CCU patients	<i>Extension</i> all ED patients
ECGS	Train	8,741+4,362	307,549+67,173
	Test Temp.	1,004	27,937
	Test Rand.	2,521	89,782
Patients	lotal	16,628	492,441 214,431
	Control	55.9%	98.5%
	STEMI	11.4%	0.4%
	NSTEMI	33.1%	1.1%

• Initial results: similar performance as in current study

Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se GitHub: https://github.com/dgedon Twitter: @danigedon

Supported by the Kjell and Märta Beijer Foundation, Anders Wiklöf, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation, and Uppsala University via AI4Research.

APPENDIX

Similar data set: CODE^{6,7}

- 811 counties in the state of Minas Gerais, Brazil.
- Collected between 2010 and 2016.
- 2.3M ECGs with 6 heart related labels; more available upon request.
- Separate high quality test data set⁸.
- Example usage for anomaly classification⁹, ecg-age¹⁰, explaining ECG diagnosis¹¹ and many more.
- Available for research upon request.

⁷Ribeiro et al., "Tele-electrocardiography and bigdata: The CODE (Clinical Outcomes in Digital Electrocardiography) study".

⁶Alkmim et al., "Improving patient access to specialized health care: the Telehealth Network of Minas Gerais, Brazil".

⁸doi.org/10.5281/zenodo.3765780

⁹Ribeiro et al., "Automatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network".

 $^{^{10}}$ Lima et al., "Deep neural network-estimated electrocardiographic age as a mortality predictor".

¹¹Oliveira et al., "Explaining End-to-End ECG Automated Diagnosis Using Contextual Features".

Appendix: CCU Admission Statistics

Appendix: Hyperparameter Selection

Appendix: Results ROC and PR curves

Results - Calibration Plot

Misclassifications:

- Follows known clinical / machine learning patterns.
- Myocarditis as imposter.

Limitations:

- Lack of external validation.
 - \rightarrow Temporal test set simulates new data distributions.
- Selected ECG trace:
 - Label was decided upon discharge from CCU.
 - We cannot ensure that the ECG we use is the one which guided the final diagnosis.
 - \rightarrow We mitigate partially by using repeated recordings during training if available.

Appendix: Extensions - (2) Blocked Artery

- Current medical classification: no MI, STEMI, NSTEMI
- Proposal of new classification: identify exact artery which is blocked
 - \rightarrow more fine grain classification
 - \rightarrow direct use for practicing physicians

Figure: Coronary Arteries¹²

¹²en.wikipedia.org/wiki/Coronary_circulation

Main comparison with Liu et al., "A Deep-Learning Algorithm for Detecting Acute Myocardial Infarction".

Similarities:

• Residual blocks but not standardized ResNet structure.

Differences:

- Lead-wise residual network instead of combining all leads.
- No SE-net block but attention mechanism for each lead.
- \rightarrow Ability to use Grad-CAM plots with different highlight for different leads.
- \rightarrow Assume that leads are independent but they are highly correlated.