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Background

• Emergency Department (ED)

• Myocardial Infarctions (MIs):

• 9M deaths/year, 200M disability-adjusted life years/year, and rising.

• False negatives: 10-50,000 missed cases/year at EDs in the United States.

• False positives: Less than half of those hospitalized for a suspected MI are diagnosed.

→ High burden on public health.

• Electrocardiogram (ECG):

• ST-elevation MI (STEMI) → detect in ECG

• non-ST-elevation-MI (NSTEMI) → require blood testing
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Background

Baselines:

• Human baseline (cardiologists): 75% acc. for STEMI1; much lower for NSTEMI.
• Deep learning models reach super-human performance but:

• only classify STEMIs2

• use managed data sets2,3

Goal: Provide well-calibrated prob. for STEMI/NSTEMI from ECGs at the ED.

Our contribution:

1. Extract a novel data set resembling the real-world setup.

2. Deep learning based model for diagnosing MIs in the ED.

1McCabe et al., “Physician accuracy in interpreting potential ST-segment elevation myocardial infarction

electrocardiograms”.
2Cho et al., “Artificial intelligence algorithm for detecting myocardial infarction using six-lead

electrocardiography”.
3Liu et al., “A Deep-Learning Algorithm for Detecting Acute Myocardial Infarction”.
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Data Set

• Standard 10 seconds 12-lead ECGs.

• Adult patients at local ED visits in Stockholm region between 2007 and 2016.

• High risk patients → admitted to coronary care unit (CCU).

• Labels:

• From SWEDEHEART registry4

• By discharging physician that followed entire patient journey during hospitalisation.

• Filter to ensure:

• inclusion of at event before-treatment ECGs

• availability of outcome label

⇒ real-world scenario for unsolved problem

4https://www.ucr.uu.se/swedeheart/dokument-sh/variabellista
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Data Set

Splitting of the data set:

10,583 patients; 12,311 admissions; 16,628 ECGs

Training Set

Train Valid

Test Set

Temp. Rand.

70%

5-Fold Cross-Validation

30%

10% 20%

8741 + 4362 1004 2521

• Use repeated recordings during training as a form of data augmentation.

• Records from the same patient in the same split.

• Preprocess: Remove low frequency baseline, re-sample, zero-pad.
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Model Architecture
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Model Training

• Baseline from Ribeiro et al.5

• Results for 5-fold cross-validation:
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5Ribeiro et al., “Automatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network”. 6/10



Results - Main

• Novel data set for unsolved problem → no direct baseline available.

• Results over 10 model seeds:

Random Temporal

AUROC (↑) NSTEMI 0.76 (0.003) 0.74 (0.003)

STEMI 0.85 (0.002) 0.82 (0.003)

AUPR (↑) NSTEMI 0.69 (0.003) 0.64 (0.005)

STEMI 0.76 (0.005) 0.64 (0.006)

Brier (↓) NSTEMI 0.19 (0.001) 0.27 (0.002)

STEMI 0.10 (0.001) 0.13 (0.001)

ECE (↓) Multiclass 0.25 (0.004) 0.11 (0.012)

⇒ Super-human-level performance
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Results - Model Analysis

Grad-CAM plots → identify patterns of the model

STEMI

• ST-segment elevation

• typical for humans

STEMI

• Down-sloping T-wave

• untypical for humans

NSTEMI

• ST-segment depression

• humans would not sus-

pect a MI
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Extension - Larger Patient Population

• More general patient population: All patients at ED

• Data set statistics:

Current Extension

CCU patients all ED patients

ECGS Train 8,741+4,362 307,549+67,173

Test Temp. 1,004 27,937

Test Rand. 2,521 89,782

Total 16,628 492,441

Patients 10,583 214,431

Control 55.9% 98.5%

STEMI 11.4% 0.4%

NSTEMI 33.1% 1.1%

• Initial results: similar performance as in current study

9/10



Contact

Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se

GitHub: https://github.com/dgedon

Twitter: @danigedon

Supported by the Kjell and Märta Beijer Foundation, Anders Wiklöf, the Wallenberg AI, Autonomous Systems
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APPENDIX



Appendix: Data Set

Similar data set: CODE6,7

• 811 counties in the state of Minas Gerais, Brazil.

• Collected between 2010 and 2016.

• 2.3M ECGs with 6 heart related labels; more available upon request.

• Separate high quality test data set8.

• Example usage for anomaly classification9, ecg-age10, explaining ECG diagnosis11

and many more.

• Available for research upon request.

6Alkmim et al., “Improving patient access to specialized health care: the Telehealth Network of Minas Gerais,

Brazil”.
7Ribeiro et al., “Tele-electrocardiography and bigdata: The CODE (Clinical Outcomes in Digital

Electrocardiography) study”.
8doi.org/10.5281/zenodo.3765780
9Ribeiro et al., “Automatic Diagnosis of the 12-Lead ECG Using a Deep Neural Network”.

10Lima et al., “Deep neural network-estimated electrocardiographic age as a mortality predictor”.
11Oliveira et al., “Explaining End-to-End ECG Automated Diagnosis Using Contextual Features”.

doi.org/10.5281/zenodo.3765780


Appendix: CCU Admission Statistics
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Appendix: Hyperparameter Selection
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Appendix: Results ROC and PR curves
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Results - Calibration Plot
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Appendix: Discussion

Misclassifications:

• Follows known clinical / machine learning patterns.

• Myocarditis as imposter.

Limitations:

• Lack of external validation.

→ Temporal test set simulates new data distributions.

• Selected ECG trace:

• Label was decided upon discharge from CCU.

• We cannot ensure that the ECG we use is the one which guided the final diagnosis.

→ We mitigate partially by using repeated recordings during training if available.



Appendix: Extensions - (2) Blocked Artery

• Current medical classification: no MI, STEMI, NSTEMI

• Proposal of new classification: identify exact artery which is blocked

→ more fine grain classification

→ direct use for practicing physicians

Figure: Coronary Arteries12

12en.wikipedia.org/wiki/Coronary_circulation

en.wikipedia.org/wiki/Coronary_circulation


Appendix: Comparison with other Models

Main comparison with Liu et al., “A Deep-Learning Algorithm for Detecting Acute

Myocardial Infarction”.

Similarities:

• Residual blocks but not standardized ResNet structure.

Differences:

• Lead-wise residual network instead of combining all leads.

• No SE-net block but attention mechanism for each lead.

→ Ability to use Grad-CAM plots with different highlight for different leads.

→ Assume that leads are independent but they are highly correlated.


	Appendix

