

Deep networks for system identification: a survey

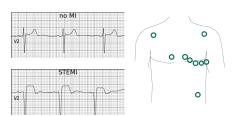
Gianluigi Pillonetto♣, Aleksandr Aravkin♦, **Daniel Gedon**♥, Lennart Ljung♠, Antônio H. Ribeiro♥, Thomas B. Schön♥

- University of Padova, Italy
- ♦University of Washington, USA
- [♥]Uppsala University, Sweden
- Linköping University, Sweden

ERNSI Workshop 2023 Stockholm, September 26, 2023

System identification with long history

Deep neural networks with recent success



ightarrow Innovate system identification with power of deep neural networks

Contents

1. Modeling of dynamical systems

- 2. Deep neural network architectures
- Optimization
- 4. Deep kernel-based learning
- Theoretical development
- Applications
- Conclusion

Modeling of dynamical systems

Three main players:

1. Family of parameterized models

$$Z = \{x(t), y(t)\}_{t=1}^{\#train}$$

 $g_{\theta}: Z(t) \mapsto \hat{y}(t+1), \qquad \theta \in D_{\theta}$

2. Parameter estimation method

$$\hat{ heta} = rg \min_{ heta \in D_{ heta}} \mathcal{L}_{ extsf{N}}(heta, Z_{ extsf{e}})$$

- 3. Validation process
 - residual analysis
 - cross-validation

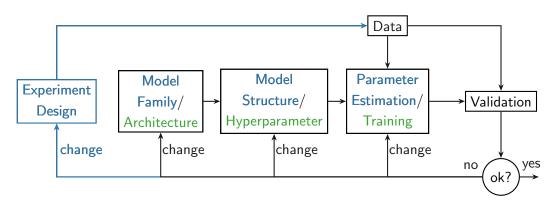
$$\#$$
 features $= \dim \theta$

$$\mathcal{L}_{emp} = \mathcal{L}(\hat{\theta}, Z_e)$$

overfitting $\mathcal{L}_{emp} = 0$ typically for #features = #train.

Modeling procedure:

System identification vs deep learning

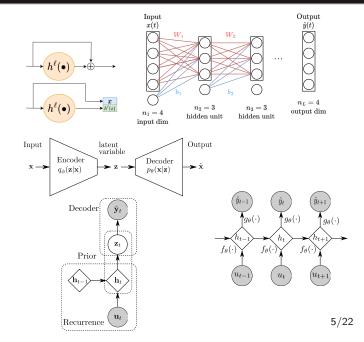


Contents

- 1. Modeling of dynamical systems
- 2. Deep neural network architectures
- 3. Optimization
- 4. Deep kernel-based learning
- Theoretical development
- Applications
- Conclusion

DNN architectures

- Fully-connected networks
- Skip and direct connections
- Convolutional networks
- Recurrent neural networks
- Latent variable models
 - Autoencoder
 - Variational autoencoder
 - Deep state-space models
- Energy-based models

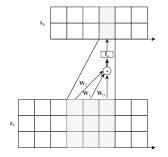


DNN architectures

Convolutional networks

Basic building block: convolutional layer

$$w(t) * z(t) = \sum_{j=0}^{k-1} w(j)^{\top} z(t-j)$$



Not just one filter but many: $W = \{w^1, \dots, w^b\}$.

Then, ith output:
$$x^{i}(t) = w^{i}(t) * z(t)$$
 for $i = 1, ..., b$

DNN architectures

Formulating regression problems

Find predictive distribution p(y(t)|x(t)).

Example: NARX model

$$y(t) = f_{\theta}(x(t)) + e(t)$$
, with $e(t) \sim \mathcal{N}(0, \sigma^2)$

o Implicit assumption: p(y(t)|x(t)) is Gaussian o neural network models the mean.

Energy-based models

$$p_{ heta}\left(y(t)\mid x(t)
ight)=rac{e^{g_{ heta}\left(y(t),x(t)
ight)}}{Z_{ heta}\left(x(t)
ight)} \quad ext{with} \quad Z_{ heta}\left(x(t)
ight)=\int e^{g_{ heta}\left(z,x(t)
ight)}dz$$

- Neural network mapping $g_{\theta}: (y(t), x(t)) \mapsto \mathbb{R}$
- Generalize implicit Gaussian assumption
- ightarrow asymmetric, heavy-tailed, multimodal, ... distributions possible

Optimization

System identification:

$$\min_{\theta} \sum_{t=1}^{\# train} \mathcal{L}(y(t), f_{\theta}(z(t)))$$

Deep learning:

$$\min_{\theta_1,\dots,\theta_L} \sum_{t=1}^{\# train} \mathcal{L}\Big(y(t), f_{\theta_L}^L \circ f_{\theta_{L-1}}^{L-1} \circ \dots \circ f_{\theta_1}^1\big(z(t)\big)\Big)$$

Optimization: Newton's method $\mathcal{O}(\#train\#param^2 + \#param^3)$

- → first-order methods
- Large dim(θ), nested structure \rightarrow gradient w.r.t. each layer + chain rule \rightarrow Backpropagation
- Large datasets → stochastic methods

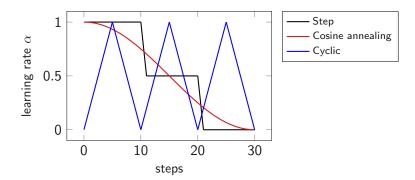
Optimization

Gradient decent optimization:

$$\theta^{i+1} = \theta^i - \alpha \nabla V(\theta^i)$$
 with α as learning rate

Stochastic gradient descent with fixed lpha does not converge $\mspace{1mu}$

Solution: Learning rate scheduler ightarrow reduce lpha to zero



Contents

- 1. Modeling of dynamical systems
- 2. Deep neural network architectures
- Optimization
- 4. Deep kernel-based learning
- 5. Theoretical development
- Applications
- Conclusion

Kernels for modeling dynamical systems

Linear kernel

$$K(x_i, x_j) = x_i^{\top} P x_j$$
 with positive semidefinite P

induces linear functions $f(x) = \theta^{\top} x$ \rightarrow FIR models

- ullet Linear kernel with $P_{ij}=arphi^{\max(i,j)}$ with $0\leq arphi<1$ \longrightarrow stable spline/TC kernel

Choice of kernel \rightarrow encode high level assumptions

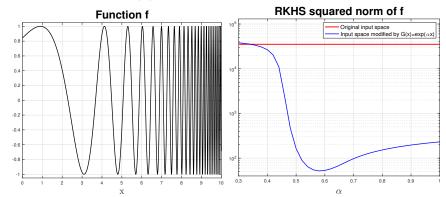
Deep kernel-based learning

Example: $f = sin(e^{x/2}) \rightarrow complicated frequency content$

- ullet Gaussian kernel: high RKHS norm o biased estimator
- Idea: transform data $f = \tilde{f} \circ G$

$$x(t) \longrightarrow G = e^{x/2} \longrightarrow \tilde{f} \longrightarrow y(t)$$

Choose $G = e^{x/2} \rightarrow \tilde{f} = sin(x)$ with single frequency



Deep kernel-based learning

Consider idea: $f = \tilde{f} \circ G$

 \rightarrow manifold Gaussian process with

$$K(x_i, x_j) := \tilde{K}(\tilde{x}_i, \tilde{x}_j) = \tilde{K}(G(x_i), G(x_j))$$

Previously: Gaussian kernel K with one scale parameter $\rho > 0$

Now: Manifold Gaussian kernel K with many parameters $\eta = [\rho, \theta]$

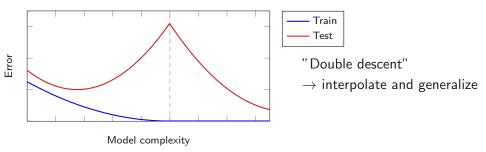
ightarrow Optimize by marginal likelihood of joint density $p(Y,f|\eta)$

Why are deep models so successful?

• 2-layer ConvNet on MNIST: 1.2m parameters vs 60k data points

AlexNet on ImageNet:
 62.3m parameters vs 1.2m data points

• . .

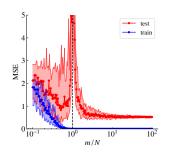


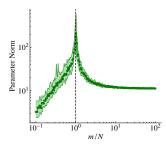
Theoretical development:

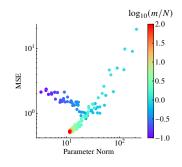
- 1. interplay of overparameterization and generalization
- 2. simplification of non-convex optimization problem

System identification example:

- NARX model: $\hat{y}(t) = \sum_{i=1}^{\#features} \theta_i \phi_i(x(t))$
- Data from: y(t) = f(x(t)) + v(t)
- #train = 100 samples
- 1-step ahead prediction







• Nonlinear transformation $\phi(x)$, input to feature space

$$\phi: \mathbb{R}^{\#inputs} \mapsto \mathbb{R}^{\#features}$$

• Linear model:

$$\hat{y} = \hat{\boldsymbol{\theta}}^{\top} \phi(x)$$

• Estimation procedure:

$$\min_{\theta} \sum_{i=1}^{\# train} (y_i - \hat{\theta}^{\top} \phi(x_i))^2$$

• Optimization procedure: Gradient descent starting from zero

$$\theta^{i+1} = \theta^i - \alpha \nabla V(\theta^i)$$

Solutions of a linear system

$$X\theta = y$$

Three scenarios:

- 1. no solution if # features < # train
- 2. one unique solution if #features = #train
- 3. multiple solution if # features > # train

Gradient descent:

$$\min_{\theta} \|\theta\|_2$$
 subject to $X\theta = y$

converges to the minimum-norm solution

ightarrow Implicit regularization of gradient descent

Implicit Regularization

Gradient descent step: $\theta^{i+1} = \theta^i - \alpha \nabla V(\theta^i)$

ightarrow does not follow continuous gradient flow

Gradient descent follows more closely

$$\dot{\theta} = -\nabla \widetilde{V}(\theta)$$

with modified cost

$$\widetilde{V}(\theta) = V(\theta) + \lambda R(\theta)$$

$$\lambda = \frac{\alpha \text{ \#features}}{4}, \quad R(\theta) = \frac{1}{\text{\#features}} \sum_{j=1}^{\text{\#features}} (\nabla_j V(\theta))^2$$

ightarrow gradient descent penalizes directions j with large cost V(heta)

2. Simplification of non-convex optimization problem

Setup:

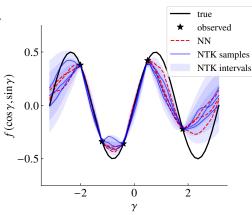
- ullet wide neural network with large $heta \in \mathbb{R}^{\# features}$
- ullet each update changes heta just by small amour
- \rightarrow linearize model around θ_0

$$f_{\theta}(x) \approx f_{\theta_0}(x) + \nabla f_{\theta_0}(x)^{\top} (\theta - \theta_0)$$

Neural tangent kernel

$$K(x, z; \theta_0) = \nabla f_{\theta_0}(x)^{\top} \nabla f_{\theta_0}(z)$$

ightarrow convex optimization problem



Contents

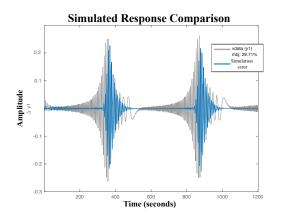
- 1. Modeling of dynamical systems
- 2. Deep neural network architectures
- 3. Optimization
- 4. Deep kernel-based learning
- Theoretical development
- 6. Applications
- 7. Conclusion

Applications

Matlab example: forced duffing oscillator (silverbox benchmark)

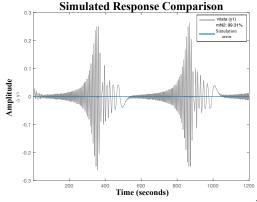
Linear Box-Jenkins type model

 \rightarrow Fit is 29.7%



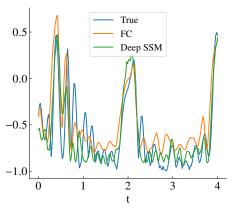
Cascaded feedforward network

 \rightarrow Fit is 99.2%



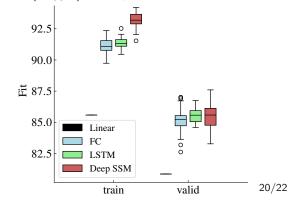
Pytorch example: Coupled electronic drives benchmark

- Basline: linear ARX model
- Feedforwad model
- LSTM
- Deep state-space model



Good fit of deep models despite #train = 300

- $\dim(\theta_{FF}) = 184,200$
- $\dim(\theta_{LSTM}) = 169,801$
- $\dim(\theta_{DSSM}) = 111,902$



Conclusion

Essential for using neural networks:

- $\bullet \ \ \text{many parameters} \to \text{overparameterization}$
- many layers → deep architectures

Open problems:

- Successful architectures:
 - Attention models and transformers
 - Flow-based models
 - Generative adversarial models (GANs) and diffusion models
 - Graph neural networks
- Robustness issues
- Theoretical development
- . . .

Thank you!

Daniel Gedon, Uppsala University

E-mail: daniel.gedon@it.uu.se

Web: dgedon.github.io

Twitter: @danigedon

