UPPSALA

Deep networks for system identification: a survey UNIVERSITET

Gianluigi Pillonetto®, Aleksandr Aravkin®, Daniel Gedon®, Lennart Ljung‘,
Antdnio H. Ribeiro®, Thomas B. Schén¥

* University of Padova, Italy
< University of Washington, USA
“Uppsala University, Sweden
#Linkdping University, Sweden

arXi.v link:
ERNSI Workshop 2023 E E
Stockholm, September 26, 2023

[=]

Introduction

System identification with long history

1/22

Introduction

Deep neural networks with recent success

no MI

Explain what system identification is in one sentence

System identification is the process of creating mathematical

models of dynamic systems based on observed data to understand,

analyze, and control their behavior.

— Innovate system identification with power of deep neural networks 2/22

Contents

1. Modeling of dynamical systems

2/22

Modeling of dynamical systems

Three main players:

1. Family of parameterized models

Z = {x(1),

()}#tram
g()ZZ() y(t+1), 0 € Dy

2. Parameter estimation method

A

0 = arg min Lu(0, Z.)
0

3. Validation process
e residual analysis #features = dim 0
e cross-validation Lemp = £(0,Z.)
overfitting Lemp = 0 typically for #features = #train.
3/22

Modeling of dynamical systems

Modeling procedure:

System identification vs deep learning

E X " Model Model Parameter
xperimen o
i Structure Estimation/ ——{ Validati
daign | | Fomiv/ [Swctre] (o stimation) | —{Valdtin]
Architecture Hyperparameter Training
change change change change
no yes
ok?

4/22

2. Deep neural network architectures

3. Optimization

4/22

DNN architectures

Fully-connected networks

Skip and direct connections

Convolutional networks

Recurrent neural networks

Latent variable models

e Autoencoder
e Variational autoencoder
e Deep state-space models

Energy-based models

—— he(.) ——i)

Input latent
variable
X —>| z —>|

Dccodcrf

Prior *

iRecurrence

e

©)
é?/
S
e @

-~ np=4
. n3 =3 . output dim
hidden unit

5/22

DNN architectures

Convolutional networks

Basic building block: convolutional layer

k—1
w(t)*2(t) =Y w(j) 2(t —))
j=0
Not just one filter but many: W = {w?, ... w’}.
Then, ith output: xI(t) = wi(t)xz(t) for i=1,...,b

6/22

DNN architectures

Formulating regression problems Find predictive distribution p(y(t)[x(t)).
Example: NARX model
y(t) = fy (x(t)) + e(t), with e(t) ~ N(0,0?)

x(t)) is Gaussian — neural network models the mean.

— Implicit assumption: p(y(t)

Energy-based models
eg()()/(t)’x(t))

Po (y(t) | X(t)) = W with Z() (X(t)) = /egﬁ‘(zvx(t))dz

e Neural network mapping gy : (v(t), x(t)) — R
e Generalize implicit Gaussian assumption
— asymmetric, heavy-tailed, multimodal, ... distributions possible

7/22

Optimization

System identification:

F£train

m|n 2 £(y (z(t)))

Deep learning:

F£train

()mi.?m Z £< f(’L © fLi -0 fj: (Z(t))>

Optimization: Newton's method O(#traintparam? + #param?3) 4
— first-order methods

e Large dim(0), nested structure — gradient w.r.t. each layer + chain rule
— Backpropagation

e Large datasets — stochastic methods ;
8/22

Optimization

Gradient decent optimization:

Ol =o' — oV V(0 with o as learning rate

Stochastic gradient descent with fixed o does not converge 4

Solution: Learning rate scheduler — reduce o to zero

1+ | | —— Step
Cosine annealing

—— Cyclic

learning rate «
o
(6]
I
|

steps 9/22

4. Deep kernel-based learning

5. Theoretical development

9/22

Deep kernel-based learning

Kernels for modeling dynamical systems
e Linear kernel
K(Xi,Xj) = X,-TPXj with positive semidefinite P

induces linear functions f(x) = x — FIR models
e Linear kernel with P;; = M) with 0 < ¢ <1 — stable spline/TC kernel

e Gaussian kernel K(x;i,xj) = exp <—M> with p >0 — NFIR models

Choice of kernel — encode high level assumptions

10/22

Deep kernel-based learning

Example: f = sin(e*/?) — complicated frequency content

e Gaussian kernel: high RKHS norm — biased estimator
e Idea: transform data f =fo G

x(t) —|G=e2pl [y()

Choose G = e*/2 — f = sin(x) with single frequency
Function f RKHS squared norm of f

o - -
—— Original input space
Input space modified by G(x)=exp(ax)

S T T S . S S 11/22

Deep kernel-based learning

Consider idea: f =fo G

— y(t)

aY!

x(t) —{ Neural Network

— manifold Gaussian process with

K(xi,x) = K(%, %) = K(G(x), G(x)))

Previously: Gaussian kernel K with one scale parameter p > 0

Now: Manifold Gaussian kernel K with many parameters n = [p, 0]

— Optimize by marginal likelihood of joint density p(Y, f|n)

12/22

Theoretical development

Why are deep models so successful?

e 2-layer ConvNet on MNIST: 1.2m parameters vs 60k data points
e AlexNet on ImageNet: 62.3m parameters vs 1.2m data points
e ...

Train

Test

"Double descent”

Error

— interpolate and generalize

Model complexity
Theoretical development:

1. interplay of overparameterization and generalization
2. simplification of non-convex optimization problem 13/22

Theoretical development

System identification example:
o NARX model: y(t) = S 7t .oy, (x(t))
e Data from: y(t) = f(x(t)) + v(t)
e #train = 100 samples

e 1-step ahead prediction
log,o(m/N)
2.0

10' =

1.0

E
z
B g 05
b5} s .
£ 8 g0 o
: Wy 00
0 ‘ay &
10 b -0.5
.
10! 10° 1o

Parameter Norm

14/22

Theoretical development

e Nonlinear transformation ¢(x), input to feature space
¢ . R#inputs — R#features
e Linear model:
. AT
y="0 ¢(x)

e Estimation procedure:

Ftrain

. AT
min S (i =0 6(x))

i=1

Optimization procedure: Gradient descent starting from zero

Ot =0l —avV(0')

15/22

Theoretical development

Solutions of a linear system
X0 =y

Three scenarios:

1. no solution if #features < F£train
2. one unique solution if F#£features = #train
3. multiple solution if #features > F£train

Gradient descent:
mein |0ll2 subject to X0 =y
converges to the minimum-norm solution

— Implicit regularization of gradient descent

16/22

Theoretical development

Implicit Regularization
Gradient descent step: '™ = 0" — aVV/(0)')
— does not follow continuous gradient flow

Gradient descent follows more closely

0=—-VV(0)
with modified cost
V(0) = V(0) + AR(0)
#£features
o #features 1 5
A= ——— — R(O) = ——— V;V(0
4 ’) #features = (V;V(9)

— gradient descent penalizes directions j with large cost V()

17/22

Theoretical development

2. Simplification of non-convex optimization problem

Setup:
e wide neural network with large ¢ € R#features
i true
e each update changes 6 just by small amour .
— linearize model around 0y ---- NN
0.5¢ —— NTK samples

NTK intervals

fi(x) = fio(x) + Vi () (6 —60) Z
5} 0.0
Neural tangent kernel 8
g
K(x,z;00) = Vfgo(x)TVfgo(z) 05}
— convex optimization problem -2 0 2
Y

18/22

6. Applications

7. Conclusion

18/22

Applications

Matlab example: forced duffing oscillator (silverbox benchmark)

Linear Box-Jenkins type model Cascaded feedforward network
— Fit is 29.7% — Fit is 99.2%
Simulated Response Comparison o Simulated Response Comparison
T T T T T vdata (y1)
02 L vdata (y1) 02k _S”“Cl:lf:lm"
mbj: 29.71%
Slm‘urlrzl;nn
01+ 01r 1
E‘ ;\‘ W W 'é'. i]
< <
01 01 4
02 02 B
03 0.3 L L L L L
200 400 800 1000 1200 200 1000 1200

600 0 . 600 800
Time (seconds) Time (seconds)

19/22

Applications

Pytorch example: Coupled electronic drives benchmark

e Basline: linear ARX model Good fit of deep models despite #train = 300
e Feedforwad model e dim(fgr) = 184,200
e LSTM e dim(0;sTm) = 169, 801
e Deep state-space model e dim(fpssm) = 111,902
—— True 0.5 +
0.5 FC Sl 2
—— Deep SSM %% °
| 90.0f
i 87.5
85.0¢ -:inear %é
| 1 FC 5
82.5 I LsT™ °
) N Deep SSM
3 4

train valid 20/22

Conclusion

Essential for using neural networks:

® many parameters — overparameterization

e many layers — deep architectures

Open problems:

e Successful architectures:
e Attention models and transformers
e Flow-based models
e Generative adversarial models (GANs) and diffusion models
e Graph neural networks

e Robustness issues

e Theoretical development

21/22

Contact

Thank you!

Daniel Gedon, Uppsala University arXiv link:
Web: dgedon.github.io E
Twitter: @danigedon

E-mail: daniel.gedon@it.uu.se

22/22

